

Page 1

Solar Development Kit with TI BLE (DEV-BLE-TI) Operation Guide

Introduction

The Solar Development Kit with TI BLE extends the TI CC2650 Sensortag Bluetooth and data collection by integrating energy harvesting and flexible solar. This complete energy harvesting solution is capable of operating in dim indoor environments when using our Indoor Light panels, and outdoors using the Classic Application panels.

This development kit is designed to be fully customizable. DevPack and JTAG connectors are present for debugging and adding TI DevPack plug-in modules. All IO pins can be accessed via a 10 pin female header so that external sensors can easily be added. The current onboard sensors can be disconnected by cutting solder bridges to allow access to all 10 IO pins.

Software development can be done using Code Composer Studio and Android Studio, which are both free to use. EAGLE PCB files are also provided.

Figure 1, Product picture.

Page 2

Table of Contents

Introduction1
Use Cases
Sensing Applications
IoT Applications4
Included in Kit
System Overview
Technical Specifications
IC6
Solar6
Software and Compatible IDEs
Electrical
Quick Setup Instructions7
Equipment7
Setup
TI SensorTag Data Monitor Notes
Home Page9
Device Page10
Temperature Profile
Light Level Profile
Connection Control Service
Software Development in Code Composer Studio13
Additional Equipment13
Installation Setup
Build and Download/Debug25
Overview of CC2650 Code Structure
Adding a Custom Service or Profile
Profile Setup
External Sensor/Device Setup
Initialization
Reprogramming with Hex Files

PowerFilm. NOT IN THE USA

Solar Development Kit with TI BLE (DEV-BLE-TI) Operation Guide Page 3

Flashing HEX Files to the DEV-BLE-TI CC2650 IC	
Merging Compiled DEV-BLE-TI Project Into a Single Hex File	
Android Studio	
Installation Setup	
Build and Run/Debug PFDEV-TI Data Monitor	
Overview of Android Code Structure	
Structure	
MainActivity.java	
DeviceActivity.java	
Bluetooth Profiles and Rows	
Layouts	
Other	
Adding a Customized Service or Profile	
SensorTagGatt.java modification	
gatt_uuid.xml modification	
Creating a Custom Bluetooth Profile Class	
DeviceActivity.java modification	
Custom Profile Row	
Block Diagram	
Diagram	
Block Diagram Notes	
BQ25570 Energy Harvester	
CC2650 Wireless MCU	
PFDEV-TI Data Monitor	
Schematic	
Overview	50
DEV-IN-BASIC BQ25570 Energy Harvester	
Bluetooth MCU	51
I/O	53
Ports and Connectors	53
Switches	53

Layout	54
Тор	54
Bottom	54
Part Placement	55
DEV-BLE-TI Application Notes	55
Power Consumption Optimization	55
Hardware Configurations	55
I/O Access	55
Charge Control Configuration	56
Capacitor/Super Capacitor Storage Element Operation	56
Theory of Operation	56
Specifications	56
CC2650 Microcontroller Reset	57

Use Cases – Power Source and Development Platform For:

Sensing Applications

Humidity	Pressure
Vibration	Motion
Air Flow	Water Flow
Moisture	Air Quality
Acceleration	Water Level
	Humidity Vibration Air Flow Moisture Acceleration

IoT Applications

Home Automation Smart City Asset Tracking Beacons Wearables Smart Agriculture Smart Transportation Equipment Monitoring Smart Buildings Wireless Nodes Gateways Industrial Automation

Included in Kit

• DEV-BLE-TI circuit board assembly

Page 5

- (2) LL200-2.4-75 Indoor Solar Panel with 6" leads
- (2) ONP1.2-37x54 Solar Panel with 6" leads
- 60mAh rechargeable Li-Polymer battery
- Instructions, hardware and software files, and product documentation

System Overview

The Solar Development Kit with TI BLE extends the TI CC2650 Sensortag Bluetooth and data collection by integrating energy harvesting and flexible solar. This complete energy harvesting solution is capable of operating in dim indoor environments when using our Indoor Light panels, and outdoors using the Classic Application panels.

This development kit is designed to be fully customizable. DevPack and JTAG connectors are present for debugging and adding TI DevPack plug-in modules. All IO pins can be accessed via a 10 pin female header so that external sensors can easily be added. The current onboard sensors can be disconnected by cutting solder bridges to allow access to all 10 IO pins.

Software development can be done using Code Composer Studio and Android Studio, which are both free to use. EAGLE PCB files are also provided.

The CC2650 device is a wireless MCU targeting Bluetooth, ZigBee[®] and 6LoWPAN, and ZigBee RF4CE remote control applications. The protocol provided with the development kit is for Bluetooth LE, however other protocols are supported as well.

Technical Specifications

IC

- CC2650 SimpleLink Multi-Standard Wireless MCU.
- BQ25570 Nano Power Boost Charger and Buck Converter for Energy Harvesting Applications.
- OPT3001 Digital Ambient Light Sensor.

Solar

• Refer to panel specific data sheets and engineering drawings for technical specifications.

Software and Compatible IDEs

- Android Studio.
- Code Composer Studio v6.2.0.00048.
- TI BLE 2.2.1 Bluetooth Low Energy Stack.

Electrical

- Pre-configured for 3.7V Lithium battery charging.
- <10uA system sleep current.
- Operational down to 200 lux.
- 10mA peak transmission current (typical).
- See CC2650 Datasheet.
- See BQ25570 Datasheet.

Page 7

Quick Setup Instructions

The following instructions will outline how to set up the DEV-BLE-TI (PFDEV-TI BLE device) to connect and send data to the PFDEV-TI Data Monitor application using the preloaded programs and configuration.

Equipment

- DEV-BLE-TI Development board.
- LL200-2.4-75 Indoor Solar Panel or ONP1.2-37x54 Solar Panel.
- Lithium Ion battery (4.2V Max) or compatible capacitor/supercapacitor.
- Android Device with Bluetooth Low Energy capability.
- Small flathead Screwdriver.

Setup

Refer to Figure 2 to help find noted location on assembled circuit board. References to PFDEV-TI Data Monitor Figures 5,6, and 7 are located in the section "PFDEV-TI Data Monitor Notes".

- 1. Open all screw terminals.
 - a. Using the flathead screwdriver, turn each screw terminal counterclockwise until it is in the open position.

NOTE: The terminals must clamp down on bare metal and not the insulation. Strip insulation off the end of wires if needed.

- 2. Connect the provided lithium ion battery to the DEV-BLE-TI board.
 - a. Insert the positive red battery wire into the Bat+ terminal. Screw the terminal down until the wire is tightly held.
 - b. Insert the negative black battery wire into the Bat- terminal. Screw the terminal down until the wire is tightly held.
- 3. Connect the solar panel to the Solar input.
 - a. Insert the positive red solar wire into the Solar+ terminal. Screw the terminal down until the wire is tightly held.
 - b. Insert the negative black solar wire into the Solar- terminal. Screw the terminal down until the wire is tightly held.

NOTE: If using a capacitor or supercapacitor, allow adequate charge up time in decent indoor light (300 lux) or outdoor light (above 25% direct sun intensity). See Figures 63 and 64 in the Capacitor Storage Element Operation section in the Application Notes for estimated charge times.

Page 8

Figure 3, Assembled DEV-BLE-TI Circuit Board.

4. Download the TI Simplelink SensorTag app from Google Play store,

Figure 4, PFDEV-TI Data Monitor Google Play Store Listing.

- 5. Open the TI Simplelink SensorTag and scan for PFDEV-TI devices.
 - a. From the home screen click Scan (Figure 5). Bluetooth devices found will be displayed on the screen.
 - b. Once the PFDEV-TI device is found, Click Connect (Figure 6).
- 6. Once connected, observe light level, battery level, and temperature displays (Figure 7).
- 7. Configure sensors as desired.

Page 9

TI SensorTag Notes

Home Page

The TI SensorTag home page can enable/disable Bluetooth scanning and displays Bluetooth devices found in a scrollable list.

Scroll down to enable Bluetooth scanning. (Figure 5).

To connect to a found PFDEV-TI device, press on the desired device (Figure 6).

				∦ ⊖ 💎 🛢 10:02
Ser	isorTag			:
?				at l
?				at l
?				al d
?				al al
?				all all
?				at l
?				all all
?				all a
?				all.
?				all all
?	LES100 A4:34:F1:E0:3C:EF			atl
WIFI	DEVICES			
Conf	îgure a new WiFi	device		
Scan st	opped, pull to refresh		Filter Off	
Ą			Filler Off	
				TIEXAS INSTRUMENTS
	<		0	

Figure 5, TI SensorTag Home Screen

Page 10

Device Page

After successfully connecting to a PFDEV-TI device, the device home page will be displayed. All of the PFDEV-TI Bluetooth profiles and services will be displayed as separate rows on the page (Figure 7). Each Profile or Service performs a different function such as displaying collected sensor data or adjusting Bluetooth connection parameter.

The PFDEV-TI Bluetooth profiles and services include the Temperature Profile, the Light Level Profile, the Connection Control Service, and the Device Information Service.

		* 🗢 🔻 🛢	10:03
← LES100		SERVICE EXPLORER	
Cloud View Device ID : A4:34:F1:E0:3C: Push to Cloud Open in browser ADVANCED	EF		>
RSSI -58dBm	Touch sparifine to show graph		
Device Information Service System ID: ef.3c.e0.00.00.11:34:a4: Model NR: LESI00 Serial NR: Bluetooth Dev Board Firmware Revision: Blue Software Revision: Blue Software Revision: Bluetooth Dev Board Manufacture re Name: Manufacturer Name			
Ambient Temperature Data -39.9°F			>
Light Sensor Data	• • • •	••••••	>
Connection Control Service Current connection interval : 57.5 ms Current Slave Latency : 0			
	0		

Figure 7, DEV-BLE-TI Data Monitor Device Screen

Page 11

Temperature Profile

The Temperature Profile displays temperature data collected by the internal CC2650 sensor. Data is plotted on a line chart while the real time measured value is displayed above it (Figure 10).

On-Chip Temperature Data
20.0°C
•

Figure 10, Temperature Configuration

Due to the low resolution of the internal 6-bit ADC, the temperature measurements are accurate to $\pm 2^{\circ}$ C.

Clicking on the Temperature Profile row will reveal its configurable settings (Figure 11).

(Dn-Chip Temperature Data
2	26.0°C
S	ensor state
	ON
S	tensor period (currently : 1000ms)
	· · · · · · · · · · · · · · · · · · ·

Figure 11, Temperature Configuration

The Temperature Profile can configure the temperature sensor ON/OFF and adjust the sensor period from 100ms to 25.5 seconds.

Light Level Profile

The Light Level Profile displays data collected by the OPT3001 lux-meter. Data is plotted on a line chart while the real time measured value is displayed above it (Figure 12).

Luxometer Data	
269.4 Lux	
	rora / ara / ara

Figure 12, Light Level Data Display Row

Page 12

The OPT3001 is capable of measuring light levels from .01-83,000 Lux. For perspective, an indoor room with no windows will be illuminated at approximately 300 Lux. Direct sunlight will measures approximately 100,000 Lux.

Clicking on the Light Level Profile row will reveal its configurable settings.

Figure 13, Light Level Configuration

The Light Level Profile can configure the sensor ON/OFF and the adjust the sensor period from 100ms-25.5s.

Connection Control Service

The Connection Control Profile can adjust the Bluetooth Connection Interval, Slave Latency, and Timeout. These parameters define how the DEV-BLE-TI and SensorTag application behave after connection. A connection event refers to a specific time when the two devices send data back and forth. This could be data collected from sensors or a handshake to verify the other device is still present.

Figure 14, Connection Control Service Row

The Connection Interval sets the time between connection events. After connecting and after connection events, each device will wait exactly one Connection Interval and then attempt a connection event with the other device. If the other device is not found it will wait another connection interval and try again. If the device continues to not find the other device a timeout will occur and the connection will be lost.

The Slave Latency is the maximum consecutive number of times a device can skip a connection event without the connection being lost. At the time of a connection event, if a device has no data to transfer it can skip the event and stay asleep to conserve power.

The Supervision Timeout is the maximum amount of time allowed between two successful connection events. If a successful connection event does not occur within the Supervision Timeout, the connection will be severed.

Sending connection parameters does not guarantee that they will be accepted. Once received, the PFDEV-TI device can accept or reject the sent parameters or may wait until a more convenient time to change connection parameters.

These settings greatly impact the power consumption of the PFDEV-TI device. These parameters, along with the sensor time period, can be optimized so that the device can operate down to 200 lux and below.

For more information on the Bluetooth connection parameters see Chapter 5 of the CC2640 and CC2650 SimpleLink Bluetooth Low Energy Software Stack 2.2.1 Developer's Guide.

NOTE: In this guide and in the PFDEV-TI Data Monitor, the parameter units are expressed in seconds whereas the CC2640 and CC2650 SimpleLink Bluetooth Low Energy Software Stack 2.2.1 Developer's Guide expresses the parameters by their actual integer values. For conversion from seconds to actual integer value see Chapter 5 of mentioned guide.

Software Development in Code Composer Studio

Additional Equipment

- SimpleLink SensorTag Debugger DevPack (Sold Separately).
- Micro USB to USB cable (Sold Separately).

Installation Setup

Modification and customization of the original TI SensorTag code was implemented using Code Composer Studio v6.2.0.00048 and TI BLE v2.2.1 Bluetooth stack, which is free to download and use.

Page 14

NOTE: Instructions are based on the Windows 10 OS.

- 1) Install TI BLE 2.2.1 Bluetooth stack.
 - a. Open the provided DEV-BLE-TI Software folder.
 - b. Run the ble_sdk_2_02_01_18_setup.exe executable.
 - c. Follow the standard recommended installation process which will include installation of TI-RTOS for CC13xx and CC26xx Wireless MCUs 2.20.01.08.
 - i. If a previous version of TI-RTOS is already installed, TI-RTOS 2.20.01.08 may not be installed automatically and will need to be installed manually. Installation executable can be found in the included software.
 - ii. Verify that TI-RTOS 2.20.01.08 is installed into the TI home directory (default: C:\ti). See Figure 15.

Organize 👻 👸 Open 🛛 Include in library 👻 Share with 👻 New folder				
🌗 Intel 🔺	Name	Date modified	Туре	
J Komodo Dragor	🌗 ccs_base	7/31/2017 2:31 PM	File folder	
National Instrum	<u>₿</u> ссsvб	10/27/2017 1:29 PM	File folder	
	🐌 install_logs	7/31/2017 2:32 PM	File folder	
Drogram Files	퉬 simplelink	11/10/2017 2:40 PM	File folder	
Des grans Tastalla	퉬 tirex-content	7/31/2017 2:43 PM	File folder	
Program Installa	tirtos_cc13xx_cc26xx_2_20_01_08	7/31/2017 2:55 PM	File folder	
ProgramData	tirtos_simplelink_2_11_01_09	7/31/2017 3:01 PM	File folder	
Python27 +	🔍 uninstallors	7/21/2017 2:01 DM	Eile folder	

Figure 15, TI-RTOS 2.20.01.08 installation folder.

- 2) Update SimpleLink directory.
 - a. Navigate to the TI home directory (default C:\ti).
 - b. Rename the old SimpleLink folder to save a copy of the original. Ex. "C:\ti\SimpleLink_Original"
 - c. Open the provided DEV-BLE-TI Software folder.
 - d. Right click the zipped SimpleLink folder and Select Extract All.
 - e. Click Browse.
 - f. Navigate to and select the TI home directory (default C:\ti).
 - g. Click Extract.

 h. Wait for the Extraction to finish. The TI home directory should now contain both the original simplelink folder and the provided simplelink folder (Figure 16).

a ben a			_ D X
Computer > Windo	ws7_OS (C:) > ti >	Search ti	٩
Organize 👻 Include in library 🕶	Share with 👻 🛛 Burn 🛛 New folder		····
🚖 Favorites	Name	Date modified	Туре
🥅 Desktop	\mu ccsv6	10/13/2017 11:16	File folder
🐌 Downloads	鷆 simplelink	10/16/2017 1:29 PM	File folder
🗐 Recent Places	퉬 simplelink(original)	10/12/2017 2:00 PM	File folder
MISC	퉬 tirtos_cc13xx_cc26xx_2_20_01_08	10/12/2017 2:00 PM	File folder
🌗 ISU misc	퉬 tirtos_simplelink_2_11_01_09	10/13/2017 10:17	File folder
	xdctools_3_30_06_67_core	10/13/2017 10:16	File folder
🥽 Libraries	xdctools_3_32_00_06_core	10/12/2017 1:59 PM	File folder
Documents	xdctools_3_32_01_22_core	10/12/2017 2:14 PM	File folder
🎝 Music	🗊 Code Composer Studio 6.2.0	10/13/2017 11:16	Shortcut
Pictures			
📑 Videos			

Figure 16, TI home directory after updating SimpleLink folder.

- 3) Install CCS v6.2.00048
 - a. Download CCS v6.2.00048 from TI CCS downloads webpage: <u>https://software-dl.ti.com/ccs/esd/documents/ccs_downloads.html#code-composer-studio-version-6-downloads</u>
 - b. Turn off virus protection and firewall before installation. They can interfere and cause installation errors
 - c. Run the ccs_setup_6.2.0.00048.exe file.
 - d. Accept terms and agreement. Press Next
 - e. Select CCS Installation/Home folder (default is c:\ti, Figure 17). Press Next.

Page 16

Choose Installation Location Where should Code Composer Studio v6 be installed?	
To change the main installation folder click the Browse button.	
CCS Install Folder	
c\ti 🗸	Browse

Figure 17, TI Installation Location

f. For Processor Support: Check SimpleLink Wireless MCUs. CC2538 device support, CC26xx device support and TI ARM Compiler options are required (Figure 18). Press Next

Processor Support Select Product Families to be installed.	
 MSP Ultra Low Power MCUs C2000 32-bit Real-time MCUs SimpleLink Wireless MCUs CC2538 Device Support CC26xx Device Support CC32xx Device Support CC32xx Device Support TI ARM Compiler GCC ARM Compiler GCC ARM MCUs Sitara 32-bit ARM Processors Media Processors Single Core DSPs Multi Core Processors UCD Digital Power Controllers 	Description Processor Architectures included: CC25xx and CC26xx.

Figure 18, Processor Support Options

g. For Debug Probe Options, TI XDS and Tiva/Stellaris ICDI debug probe support are required (Figure 19). Press Next.

Page 17

Description

Select Debug Probes

Select the debug probes you want installed and deselect the debug probes you want to leave out.

✓ TI XDS Debug Probe Support

Blackhawk Debug Probes

Spectrum Digital Debug Probes and Boards

✓ Tiva/Stellaris ICDI Debug Probe

h. No App Center options are required (Figure 20). Press Next.

- i. You may need to allow the program firewall access.
- j. Press Finish.
- 4) Update the CCS flashCC26xx.dll file.
 - a. Open the provided software files.
 - b. Right click and copy FlashCC26xx.dll.
 - c. Navigate to the <CCS62 INSTALL DIR>\ccsv6\ccs_base\DebugServer\bin directory (default install directory is C:\ti) and find FlashCC26xx.dll.
 - d. Rename the old FlashCC26xx.dll to FlashCC26xxVOID.dll.
 - e. Paste the new FlashCC26xx.dll copied from the provided software.

Page 18

- _ _ _ or Personalities 🣙 ≪ ti 🕨 ccsv6 🕨 ccs_base 🕨 DebugServer 🕨 bin 🕨 + 4+ Search bin Q • Organize 🔻 Include in library 🔻 Share with 🔻 Burn New folder . 2 Name Date modified Type 쑦 Favorites - -📃 Desktop Flash28xx.dll 8/5/2016 11:49 AM Application extens = bownloads FlashC2000F021.dll 8/5/2016 11:49 AM Application extens Recent Places flashCC26xx.dll 5/17/2017 12:30 PM Application extens MISC flashCC26xxVOID.dll 6/30/2016 6:11 PM Application extens 📗 ISU misc FlashDFUStellaris.dll 8/5/2016 11:49 AM Application extens FlashDLLDB 7/31/2016 6:21 PM XML Document 词 Libraries FlashEthernetStellaris.dll 8/5/2016 11:49 AM Application extens Ш Þ Documents 43 items
- f. The directory should now resemble Figure 21.

Figure 21, Updated <CCS62 INSTALL DIR>\ccsv6\ccs_base\DebugServer\bin directory.

- 5) Install TI 5.2.6 ARM compiler. Refer to Figure 22 and 23 for help identifying mentioned fields.
 - a. Open CCS (Code Composer Studio)
 - b. On the top menu bar click Help Install New Software (Figure 22). This will take you to the Available Software Installation page (Figure 23).

Page 19

😳 CCS Debug - Code Composer Studio			
File Edit View Project Run Tools Scripts Window	Help	2	
	. 🚳	Welcome	1
		CCS Developer Site	
🖻 bim_main.c 🔂 icall_startup.c 🔂 main.c 📆)	CCS Support	
869 /*	-	CCS Videos and Tutorials	
870 * ====== Hwi_excHandler ======		CCS videos and rutonais	
871 */	0	Help Contents	ι.
872 Void Hwi_exchandler(Uint *excStack, Uint 873 {	22	Search	ι.
874 Hwi_module->excActive[0] = TRUE;	~	Dynamic Heln	ι.
875		bynamie riep	
876 /* spin here if no exception handler	i	Key Assist Ctrl+Shift+L	L-1
877 While (Hwi_excHandlerFunc == NULL) {		Tips and Tricks	
879 }		Cheat Sheets	ι.
880			н.
881 Hwi_excHandlerFunc(excStack, lr);	V	CCS App Center	ι.
883		Code Composer Studio Licensing Information	ι.
884 /*	2	Check for Updates	ι.
885 * ====== Hwi_excHandlerMin ======	G.	Install New Software	
886 */ 887 Void Hui excHandlerMin(UInt *excStack UI	322	Install New Softwaren	
888 {		Installation Details	ι.
889 Hwi_ExcContext excContext;	8	Eclipse Marketplace	
890 UInt excNum;	ŵ	About Code Composer Studio	
891 UInt coreId = 0;	40		

Figure 22, Install New Software

Page 20

🐳 Install		x
Available Software Check the items that you wish to install.		
Work with: Code Generation Tools Updates - http://software-dl.ti.com	n/dsps/dsps_public_sw/sdo_ccstudio/codegen/Updates/p2win32 Find more software by working with the <u>"Available Software Sites"</u> preference	es.
type filter text		
Name	Version	
ARM Compiler Tools	15.9.0	
🔲 🏟 ARM Compiler Tools	5.2.9	
🔲 🖗 ARM Compiler Tools	5.2.8	
Campiler Tools	5.2.7	
🖉 🖗 ARM Compiler Tools	5.2.6	
ARIVI Compiler Tools	5.2.5	
🔲 🖗 ARM Compiler Tools	5.2.4	
🔄 🤯 ARM Compiler Tools	5.2.3	Ŧ
Select All Deselect All 1 item selected		
Detaile		
Details		
		÷
Show only the latest versions of available software	Hide items that are already installed	
Group items by category	What is <u>already installed</u> ?	
Show only software applicable to target environment		
Contact all undate sites during install to find required coffware		
en contact an apuate sites during instan to find required software		
	\sim	
?	< Back Next > Finish Cancel	

Figure 23, Install Available Software Page.

- c. In the bottom left hand corner, uncheck the "Show only the latest versions of available software" box.
- d. In "Work with" field, type:

http://software-dl.ti.com/dsps/dsps_public_sw/sdo_ccstudio/codegen/Updates/p2win32/

- e. Under TI Compiler Updates, select TI ARM Compiler Tools Version 5.2.6. Click Next. (Figure 23)
- f. The Review Licenses screen should appear. Accept and Click Finish.
- g. Restart CCS to finish installation.
- 6) Install the Debugger Dev Pack interface.
 - a. Close out of CCS if it is open.
 - Plug the Debugger Dev Pack into a USB port on your computer Via a B-Male Micro USB to an A-Male USB cable and wait for the driver to finish installing. (Figure 24)

Page 21

Driver Software Installation		×
Your device is ready to use		
XDS110 Class Debug Probe XDS110 Class Data Port	Ready to use Ready to use	
		Close

Figure 24, Debugger Driver Installation.

- 7) Install TIRTOS v2.11.01.9
 - a. Open the provided software folder.
 - b. Run the tirtos_simplelink_setupwin32_2_11_01_09 executable.
 - c. After the setup wizard loads, click Next (Figure 25)

🧃 Setup	
	Setup - TI-RTOS for SimpleLink Wireless MCUs 2.11.01.09
	Welcome to the TI-RTOS for SimpleLink Wireless MCUs 2.11.01.09 Setup Wizard.
TEXAS INSTRUMENTS	
	< Back Next > Cancel

Figure 25, TI-RTOS 2.11.01.09 setup wizard.

- d. Accept the license agreement. Click next
- e. Select the proper home directory (default is C:\ti). Click Next

Page 22

- f. After Installation Click Finish.
- g. Open CCS or close and restart it if it is already open.
- h. CCS should detect new installable products (Figure 26). Click Install.

install Discovered Products	
New Installable Products Discovered	
These products require installation into Eclipse environment. Please select the products you wish to install. De-selected products may be installed later through Preferences > Code Composer Studio > Products.	
 ✓ Sc:\ti\tirtos_simplelink_2_11_01_09 ✓ C:\ti\xdctools_3_30_06_67_core 	Select All Deselect All
 ✓ Show newly discovered products only ✓ Search for new installable products each time Code Composer Studio is started 	
Install	Not Now

Figure 26, Install Discovered Products.

- 8) Import the DEV-BLE-TI CCS app and stack projects.
 - a. Open CCS.
 - b. Make sure that the "CCS Edit" button in the upper right corner is pressed.
 - c. In the Project menu tab click "Import CCS projects..." (Figure 27).

Page 23

Figure 27, Import CCS Project tab.

d. The Select CCS Project to Import page should now be open. (Figure 28)

Find the second	
Select CCS Projects to Import Select a directory to search for existing CCS Eclipse projects.	
Select search-directory: C:\ti\simplelink\ble_sdk_2_02_01_18\example Select archive file:	Browse
Discovered projects:	
[C:\ti\simplelink\ble_sdk_2_02_01_18] [C:\ti\simplelink\ble_sdk_2_02_01_18] [] [sensortag_cc2650stk_stack [C:\ti\simplelink\ble_sdk_2_02_01_3	Select All Deselect All Refresh
Automatically import referenced projects found in same search-director Copy projects into workspace Open the <u>Resource Explorer</u> to browse available example projects	y
? Finish	Cancel

Figure 28, Select CCS Projects to import

Page 24

- e. Under "Select search-directory", Click Browse
- f. Navigate to <TI home directory (default: C:\ti)>\simplelink\ble_sdk_2_02_01_18\examples\cc2650stk\sensortag\ and select the ccs folder (Figure 29). Click OK

Figure 29, DEV-BLE-TI Project Location

Page 25

- g. The sensortag_cc2650stk_app and sensortagcc2650stk_stack projects should appear in the Discovered projects box (Figure 28).
- h. Check the box for each project (Figure 28).
- i. Make sure that "copy projects into workspace" box is unchecked (Figure 28).
- j. "Automatically import referenced projects found in same search-directory" box can be checked or unchecked (Figure 28).
- k. Click Finish.
- 9) Import the DEV-BLE-TI CCS bim_extflash project.
 - a. Return to the Import CCS Projects page by clicking Projects Import CCS Projects...
 - b. Under "Select search-directory:", navigate to <TI home directory (default: C:\ti)>\simplelink\ble_sdk_2_02_01_18\examples\util\bim_extflash\cc2640\ and select the ccs folder. Click OK
 - c. The bim_extflash project should appear in the Discovered projects: box.
 - d. Check the box next to the bim_extflash project.
 - e. Make sure the "Copy projects into workspace" box is unchecked.
 - f. The "Automatically import reference projects found in same search-directory" box can be checked or unchecked.
 - g. Click Finish. The bim_extflash project should appear in the Project Explorer along with the sensortag_cc2650stk_app and sensortag_cc2650stk_stack projects. (Figure 30).

Figure 30, Project Explorer with imported projects.

See instructions below for build and download/debug instructions.

Build and Download/Debug

The build and download process is more involved due to the multi project structure. The build configurations of each project depend on each other so the order in which projects are built is important. Some projects also share memory segments so the order of download is also important. For more information on the build and debug process see the CC2640 and CC2650 SimpleLink Bluetooth Low Energy Software Stack 2.2.1 Developer's Guide sections 2.6. (http://www.ti.com/lit/ug/swru393d/swru393d.pdf)

Follow these steps to build, download and debug code on the DEV-BLE-TI.

- 1) Clean all projects.
 - a. Under Projects menu tab, Click Clean. (Figure 31).

Figure 31, Project - Clean...

b. The Clean form should appear (Figure 32).

Page 27

Clean all projects	Clean projects selected below
bim_extflash	
🔲 💯 sensortag_cc2650stk_app	
sensortag_cc2650stk_stack	
Start a build immediately	
Ruild the entire workspace	
Build the entire workspace	

- c. At the top right of the form select the "Clean all projects" radio button.
- d. UNCHECK the "Start a build immediately" box at the bottom right of the form.
- e. Click OK. Wait for the cleaning process to finish.
- 2) Build bim_extflash project.
 - a. Right Click the bim_extflash project in the Project Explorer (Figure 33).

Page 28

CCS Edit - Code Composer Studio			
File Edit View Navigate Project Ru	n Scr	ipts Window Help	
📑 🕶 🔚 🕼 📮 🔦 🕶 🖉 😽 🕶	<i>-</i>		
Project Explorer 🔀	ŋ	New	etting Started S?
sensortag_cc2650stk_app Sensortag_cc2650stk_stack		Show In	· · 🛌
· · · · · · · · · · · · · · · · · · ·		Add Files	
		Сору	Ctrl+C
	B	Paste	Ctrl+V
	×	Delete	Delete
		Refactor	• •
		Source	· · · ·
		Move	
		Rename	F2
		Import	• •
	2	Export	
		Show Build Settings	
		Build Project	
		Clean Project	
		Rebuild Project	
	8	Refresh	F5
		Close Project	

Figure 33, Right Click - Build Project.

- b. Select "Build Project". Wait for the build process to finish.
- 3) Repeat the build process (Step 2) for the sensortag_cc2650stk_stack project
- 4) Repeat the build process (Step 2) for the sensortag_cc2650stk_app project
- 5) Use a microUSB cable to connect the Debugger Dev Pack to a USB port on your computer. Wait for the driver software to finish installing.
- 6) Attach the Debugger Dev Pack to the DEV-BLE-TI using the Dev Pack Connectors P1 and P2. (Figure 34)

Page 29

Figure 34, Circuit Board Dev Pack Connector.

- 7) Download/Debug the bim_extflash project. (Figure 35)
 - a. Right Click the bim_extflash project.
 - b. Select Debug As 1 Code Composer Debug Session.
 - c. Wait for the program to load.

Figure 35, Download/Debug.

d. Click the red stop square on the toolbar to stop the debug session. (Figure 36)

Figure 36, Terminate Debug Session.

- 8) Repeat the Download/Debug process (Step 7) for the sensortag_cc2650stk_stack project.
- 9) Repeat the Download/Debug process (Step 7) for the sensortag_cc2650stk_app
 - a. To debug the application, click the green run arrow instead of the red stop square after program loads.

Overview of CC2650 Code Structure

The code structure of the DEV-BLE-TI is broken up into three separate projects; bim_extflash, sensortag_cc2650stk_stack, and sensortag_cc2650stk_app. These projects are loaded into separate segments of flash memory and work together to produce the final functionality of the device.

The bim_extflash project is the Boot Image Manager which handles Over Air Downloads. This gives users the ability to update device software through the BLE interface. For more information on using the BIM refer to the CC2640 BLE OAD User's Guide. (https://e2e.ti.com/cfs-file/ key/communityserver-discussions-components-files/538/CC2640-BLE-OAD-User_2700_s-Guide.pdf).

The sensortag_cc2650stk_stack contains the BLE software stack and is responsible for implementing the Bluetooth Low Energy protocol. For details on the BLE stack see the CC2640 and CC2650 SimpleLink Bluetooth Low Energy Software Stack 2.2.1 Developer's Guide.

The sensortag_cc2650stk_app contains the application. This includes the main application loops and threads, Bluetooth profiles, startup procedures, hardware interfaces, and the interfacing the BLE stack.

The majority of customization will only affect the sensortag_cc2650stk_app project. Adding sensors or profiles can be done by modifying the application project (See Adding a Custom Service or Profile).

More information, examples, and documentation for TI SimpleLink TIRTOS can be found in the TI Resource Explorer found at <u>http://dev.ti.com/tirex/#/</u>

Particularly helpful is the SimpleLink[™] Academy 1.14.02 for SimpleLink CC2640R2 SDK 1.50 found under Software – SimpleLink CC2640R2 SDK -v:1.50.00.58 – SimpleLink Academy

It provides thorough explanation of the TI BLE stack, TIRTOS operating system, interfacing with sensor drivers, and examples.

Adding a Custom Service or Profile

New sensors or functionality added to the DEV-BLE-TI will have to be integrated into the application code structure.

Profile Setup

A tutorial on how to set up a custom profile in a TI BLE application can be found in the TI Resource Explorer under Software – SimpleLink CC2640R2 SDK -v:1.50.00.58 – SimpleLink Academy – Lab Overview – Bluetooth 4.2 – Custom Profile.

External Sensor/Device Setup

A tutorial on setting up sensors and an example setting up a UART connection can be found in the TI Resource Explorer under Software – SimpleLink CC2640R2 SDK -v:1.50.00.58 – SimpleLink Academy – Lab Overview – TI Drivers – Configuring TI Drivers.

Initialization

Once the sensor is configured and the profile is set up the last step is to initialize the profile in the application code. This can be done in the sensortag_init() function located in the sensortag.c file.

Figure 37 shows where an example initialization function, SensorCustom_init(), should be place. The initialization function should include required components outline by profile setup section.

Page 32

```
499
496
    // Add device info service.
497 DevInfo_AddService();
498
499 // Add application specific device information
500 SensorTag_setDeviceInfo();
501
502 // Add battery monitor
503 SensorTagBatt_init();
504
505 /*
506 SensorCustom_init();
507
    */
508
509
    // Power on self-test for sensors, flash and DevPack
                      Figure 37, Location in code to initialize a custom service.
```

Reprogramming with Hex Files

Device firmware can be compiled into HEX files and flashed onto the CC2650 chip using TI's SmartRF Flash Programming tool and a compatible programmer. For detailed information on compiling and using HEX files see the CC2640 and CC2650 SimpleLink Bluetooth Low Energy Software Stack 2.2.1 Developer's Guide section 2.7 and the CC2640 BLE OAD User's Guide.

Flashing HEX Files to the DEV-BLE-TI CC2650 IC

Follow the instruction below to reprogram the DEV-BLE-TI Dev Kit to its factory default program. Instructions assumes user has access to the TI Debugger Dev Pack or equivalent programmer. Instructions are based on Windows 10 OS.

- 1) Install the latest version of TI's FLASH-PROGRAMMER-2 PC application: http://www.ti.com/tool/FLASH-PROGRAMMER
- 2) Follow standard installation instructions.
- 3) When finished, open application to the 'Main' tab (Figure 40).

Page 33

🔮 SmartRF Flash Programme	r 2 - Texas Instruments	- 🗆 X
SmartRF	™Flash Programmer 2 ver. 1.8.1	۶ م
Connected devices: V XDS110, XDS-L300 Unknown V XDS110 Class Appli Unknown	Main Edit Info Page MAC Address Flash image(s) Browse Image: Single Image: Single Image: Single Image: Single Image: Single Image: Single Image: Single Image: Single	Image Overrides 👘
Refresh 🗹 Auto-det Selected target(0):	Actions Hide options<<< Erase Program Verify • All unprotected pages • Entire source file • CRC check • All unprotected pages • in image filled • Pages filled with • Pages filled with • Specific pa; • Exclude pages: • Pages • Pages No actions selected. • Exclude pages: • Pages	
State: unknown Flash size: N.A. Ram size: N.A. Chip revision: N.A. Package: N.A.	▲ Status	Clear

Figure 38, SmartRF Flash Programmer 2 PC Application

- 4) Connect the Debugger Dev pack to a USB port on the PC. It should appear in the connected device display.
- 5) Connect the Debugger Dev pack to the DEV-BLE-TI PCB. The connected devices list should update to read "CC2650" (Figure 39)
- 6) Click on "CC2650" in the connected devices list to select it.

Figure 39, DEV-BLE-TI device connected to the SmartRF Flash Programmer 2

- 7) On the "Main" tab, select Single and click Browse.
- Navigate to the DEV-BLE-TI Software folder in the provided Software and Resources Package. Select sensortag_cc2650stk_all.hex (Figure 40)

Page 34

- 9) In the Actions list check Program. (Figure 40)
- 10) Click the Play button to Flash the code on the CC2650 IC, when complete the progress bar should turn green and read Success!
- 11) If failure occurs, you may need to erase the Flash and try again. Click the wrench in the top right corner and Select CC26xx/CC13xx Forced Mass Erase.

SmartRF Flash Programme	r 2 - Texas Instruments	- 🗆 X
SmartRF	™Flash Programmer 2 ver. 1.8.1	1
 ✓ XDS110, XDS-L300 ✓ CC2650 ✓ XDS110 Class Appli ② Unknown 	Main Edit Info Page MAC Address Flash image(s) EV-IN-BLE-TI Software/Software/sensortag_cc2650stk_all.hex Browse Multiple Clear	Image Overrides Image Overrides Customer Config Disable Boo' Keep CCFG Flash lock Write-protect pages:
Refresh Auto-det Selected target(1): CC2650 Wireless MCU 24 fiz Raté	Actions Hide options<<< Program CRC check CRC check CRC check Readback Exclude pages in image filled Ox with: Pages in image	Lock debug interface Secondary MAC Address Flash Address IEEE 802.15.4: 0x0 Retain secondary IEEE addre Flash Address BLE: 0x0001FFD0
TEXAS INSTRUMENTS	Specific pa Specific pa Program entire source image	Retain secondary BLE addres
Flash size: 128 KB Ram size: 20 KB Chip revision: D (2.3) Package: 4x4 mm QFN-32 (Status Initiate access to target: XDS-L3000058 using 2-pin cJTAG. Success!	Clear \$

Figure 40, SmartRF Flash Programmer 2 Successful Operation.

After successful flashing, the DEV-BLE-TI kit will now operate in its default original state.

Merging Compiled DEV-BLE-TI Project Into a Single Hex File

The DEV-BLE-TI firmware consists of three components; the application, the BLE stack and Over-Air-Download. Code Composer Studio compiles each of these projects separately and is configured to output 3 separate Hex code files.

Follow the instructions below to combine the 3 project hex files into a single file able to be flashed on the CC2650 IC, as described in the previous section.

1) Download and install python 2.7.0 from https://www.python.org/download/releases/2.7/

Page 35

- Open Command Prompt on your PC and Navigate to the C:\Python27\Scripts. (Figure 41)
- 3) Type "pip install intelhex" and execute. (Figure 41)
- 4) Make sure output reads "successfully installed intelhex-2.2.1" or equivalent version.

Command Prompt
C:\Python27\Scripts>pip install intelhex
Collecting intelhex
Using cached https://files.pythonhosted.org/packages/bf/77/bf670318b3db325c71e2ac6a90b7bc
e/intelhex-2.2.1-py2.py3-none-any.whl
Installing collected packages: intelhex
Successfully installed intelhex-2.2.1
You are using pip version 18.1, however version 20.0.2 is available.
You should consider upgrading via the 'python -m pip installupgrade pip' command.
C:\Python27\Scripts>

Figure 41, Installing intelhex python library.

- 5) In file explorer, open the ti home directory (Default C:\ti).
- 6) Navigate to

...\ti\simplelink\ble_sdk_2_02_01_18 \examples\cc2650stk \sensortag \ccs \app and double click the merge.bat file.

```
C:\Windows\system32\cmd.exe
```

Create combined HEX files

Created app\FlashOnly_OAD\sensortag_cc2650stk_app_stack_oad.hex Created app\FlashOnly_OAD\sensortag_cc2650stk_all.hex Press any key to continue . . .

The 3 project components have now been successfully merged into a single hex file, sensortag_cc2650stk_all.hex. This file is located in the app\FlashOnly_OAD folder of the ccs project directory. It can be flashed to the CC2650 IC following the instructions provided in the previous section.

Page 36

Android Studio

Installation Setup

Note: The example project will not be accepted by the Google Play Store due to being designed for an older version of Android. It is purely to show how to add custom Bluetooth characteristics and services.

- 1) Install Android Studio.
 - a. Download the latest version of Android Studio from https://developer.android.com/studio/index.html
 - b. Run the installation executable after it has finished downloading.
 - c. The Android Studio Setup welcome screen should appear (Figure 38). Click Next.

Figure 43, Android Studio Installation Wizard Welcome Screen.

d. For "Choose Components", check all boxes (Figure 43). Click Next.

Page 37

🚈 Android Studio Setup		- 🗆	×		
<u> </u>	Choose Components Choose which features of Android Studio you want to install.				
Check the components you want to install and uncheck the components you don't want to install. Click Next to continue.					
Select components to insta	all: Android Studio Android Virtual Device	Description Position your mous over a component see its description,	e to		
Space required: 2.3GB					
	< Back	Next > 0	Cancel		

Figure 44, Choose Android Studio Components.

- e. For "License Agreement", Click I Agree.
- f. For "Configuration Settings", Choose a desired Android installation location or use the default locations. Click Next.
- g. Select desired Start Menu Folder location. Click Install.
- h. On the "Android Studio Setup" screen, check the "Start Android Studio" box (Figure 45). Click Finish.

Page 38

Figure 45, Android Studio Installation Completion Screen.

- i. The first time running Android Studio, it will go through the preferences setup. Choose standard settings as desired or configure from an installation folder.
- 2) Import the PFDEV-TI Data Monitor project. Note: This project will not be accepted by the Google Play Store due to being designed for an older version of Android. This project is purely to show how to add custom Bluetooth characteristics and services.
 - a. Open Provided DEV-BLE-TI Software folder.
 - b. Extract the sensortag-20-android project to desired working directory on your local machine.
 - c. Open Android Studio if it is not already open.
 - d. Close out of any open projects and navigate to the Android Studio welcome screen (Figure 46).

Page 39

Figure 46, Android Studio Home Screen.

- e. Select "Open an existing Android Studio project".
- f. Browse to the local working directory where the sensortag-20-android project was extracted too.
- g. Expand sensortag-20-android folder and select the sensortag-20-android project (Figure 47). Click OK.

Figure 47, sensortag project.

h. Android may prompt to change the Android SDK path to reflect your local machine (Figure 48), Click OK.

Page 40

Figure 48, Sync Android SDKs

- i. Allow project to build and sync. Ignore "obsolete" warning.
- j. If SDK is not present, sync may fail. Install missing SDK package and resync (Figure 49)

Figure 49, Sync Android SDKs

- 3) Install USB ADB driver for the specific Android device you will be using for development. As an example, the set-up process for a Kindle Fire Tablet will be shown.
 - a. Using the Windows Device manager, uninstall any drivers the computer has installed for the Kindle Fire (Figure 50).

Page 41

🚔 Device Manager		
File Action View Help		
	15 · · · · · · · · · · · · · · · · · · ·	
⊿ - 📇 273RG22		*
Batteries		
Bluetooth Radios		=
⊳ nter		
Disk drives		
Display adapters		
a 🖳 Fire Devices		
🔚 🔚 Android Composite ADB Int		
Human Interface Devices	Update Driver Software	_
► CONTACTATA DI controllers	Disable	
Uninstalls the driver for the selected device.		
Installed memory (RAM): 4.00 GB	- Chinistan	
System type: 64-bit O	tir Scan for hardware changes	
Pen and Touch: No Pen of	Properties	

Figure 50, Uninstall Any Drivers present for your Android Device.

- b. Make sure Android Device is not plugged into your computer.
- c. Enable USB Debugging on your Android device. Android device developer settings are hidden by the manufacturer and need to be enabled.
 - i. To enable Developer settings.
 - 1. Open Settings About. (or find where the build umber is located on your device)
 - Click Build number 7 times. (For Kindle Fire, Serial Number is tapped 7 times instead of build number and is located in Settings – Device Options)
 - 3. After the 7th tap, the developer menu should appear in the settings menu.
 - 4. Although the procedure should be the same for all android devices, the "Build number" setting may have a different name and be located in different places for different devices.
 - ii. In Developer settings, make sure "Enable ADB" or "USB debugging" are enabled.
- d. Obtain the USB ADB driver for you specific Android Device. The following webpage provides instructions on installing OEM USB Drivers for a variety of Android device manufacturers.

https://developer.android.com/studio/run/oem-usb.html

Page 42

- i. For Kindle Fire, USB ADB driver can be downloaded from this URL; <u>https://s3.amazonaws.com/android-sdk-</u> <u>manager/redist/kindle_fire_usb_driver.zip</u>
- e. Follow the manufactures instructions on installing the ADB driver for your android device.
 - i. For Kindle Fire, a setup executable is provided.
 - 1. After running the executable and following the installation prompts, the driver is ready to use.
 - 2. After connecting the Kindle Fire to the computer via USB it was able to successfully recognize and install the correct driver for the Kindle Fire (Figure 51).

Driver Software Installation		X
Your device is ready to use		
USB Composite Device Fire Android Composite ADB Interface	 Ready to use Ready to use Finished, restart required 	
		Close

Figure 51, Kindle Fire Driver Installation.

- f. Connect to Android Device in Android Studio
 - i. Unplug Android device from computer.
 - ii. Open Android Studio.
 - iii. When no devices are present the device toolbar should read "No Devices" (Figure 52)

👳 sensortag20 [C:\Documents\sensortag-20-android\sensortag20] - Android Studio

Figure 52, Device Toolbar.

Page 43

iv. Plug Android device into computer and popup to enable USB debugging should appear on your device (Figure 53). Click OK.

Figure 53, Allow USB Debugging on Android Device.

g. Android should now detect your device (Figure 54).

Figure 54, Allow USB Debugging on Android Device.

Page 44

Build and Run/Debug PFDEV-TI Data Monitor

The following steps will outline how to build and debug the DEV-BLE-TI project on a connected Android device. Assuming you have already gone through the Android Installation and setup procedure.

- 1) Open the DEV-BLE-TI Android Studio project.
- 2) Connect your Android device to the computer via USB. (follow instructions in previous section to connect device to Android Studio)
- 3) To build the project, select Build on the top menu bar and click Make Project (Figure 55)

Figure 55, Make Project.

4) To download and run/debug the project on your Android device, select Run on the top menu bar and click Run 'BleSensorTag' or Debug 'BleSensorTag'. (Figure 56).

Figure 56, Run Program.

5) If a deployment target has not been set, a prompt will ask you to select a target device. Choose your connected Android device. Click OK.

NOTE: Bluetooth features are incompatible with Virtual devices, therefore the SensorTag can only be run/debugged on real Android devices.

Page 45

Overview of Android Code Structure

Structure

The SensorTag app utilizes both java and xml to create the functionality and User Interface (UI) of the application. In general, java activities handle the flow of the application while xml files are used to define the various layouts, constants and other UI components.

Apart from the build files, the project code is separated into the java, assets, and res (resource) folders. (located at \sensortag20\BLESensorTag\src\)

The java folder (located at

\sensortag20\BLESensorTag\src\main\jave\com\powerfilm\les100\ble\sensortag) contains the main application activities which includes the MainActivity.java, DeviceActivity.java and all of the Bluetooth profiles and row java files.

MainActivity.java

The MainActivity.java code is run at the start of the application and is responsible for handling user interaction with the home screen. It handles scanning for Bluetooth devices and displaying devices found to the user.

DeviceActivity.java

The DeviceActivity.java code runs when the main activity selects a device to connect too. This activity handles the Bluetooth connection, data transfer and interaction with the device home page.

After discovering all Profiles and Services of the connected device, the DeviceActivity initializes a row for each one. If new Bluetooth profiles or service are added to the application, this activity will need to be modified to include those as well.

Bluetooth Profiles and Rows

Each Bluetooth Profile or Service has a java activity associated with it. This code is run after the profile or service is discovered. These activities handle data specific to their functionality.

The SensorTag Profiles and services functionality are outlined in the section "SensorTag Notes".

Rows are defined by the GenericCharacteristicTableRow activity and display data and information on the UI. If extra features are required, profiles may have their own specific row activity which is an extension of the GenericCharacteristicTableRow. For example, the Battery Level Profile needs extra features to define the Max and Min Battery levels. These features are created in the BatteryTableRow activity.

Page 46

Layouts

The UI is defined in the xml files located in the layout section of the res folder. The xml files define the UI elements for the various pages and screens throughout the application.

Other

The res folder also contains xml files with string constants, gatt_uuids, and preferences.

The Android Manifest file located in the root directory somewhat ties all application components together. This is where the project launch location is stored, application permissions, and other critical settings are.

Android Studio projects use the Gradle build system to save build settings and configurations.

Adding a Customized Service or Profile

After adding a new sensor along with a service or profile to the DEV-BLE-TI device firmware, the SensorTag must also be updated to be able to discover and display its data.

For general information about android BLE development and SensorTag specific Android development see the SensorTag wiki guide at

http://processors.wiki.ti.com/index.php/SensorTag_User_Guide#SensorTag_Android_Development

To integrate a new Bluetooth service into the existing Android project, the DeviceActivity.java, SensorTagGatt.java and the gatt_uuid.xml files will have to be modified. Also, a new Bluetooth profile class will have to be created. If the service requires more than a generic row to display its data then a new row class will have to be created.

SensorTagGatt.java modification

The SensorTagGatt.java class contains the UUIDs for all Bluetooth services used. The UUIDs of the new service must be added to this class. Figure 57 shows an example entry for a new custom profile commented out.

Page 47

```
UUID_BATT_SERV = fromString("0000180F-0000-1000-8000-00805f9b34fb"),
UUID_BATT_LEVEL = fromString("00002A19-0000-1000-8000-00805f9b34fb"),
UUID_BATT_CONFIG = fromString("f0002A1A-0451-4000-b000-00000000000"),
UUID_BATT_PERIOD = fromString("f0002A1B-0451-4000-b000-00000000000");
//UUID_CUSTOM_SERV = fromString("0000XXXX-0000-1000-8000-00805f9b34fb"),
//UUID_CUSTOM_DATA = fromString("0000XXXX-0000-1000-8000-00805f9b34fb"),
//UUID_CUSTOM_DATA = fromString("f000XXXX-0451-4000-b000-0000000000"),
//UUID_CUSTOM_PERIOD = fromString("f000XXXX-0451-4000-b000-0000000000");
```

Figure 57, Example template of the UUID entries for a custom service commented out in the SensortagGatt.java class.

gatt_uuid.xml modification

The gatt_uuid.xml file contains descriptions and names of the UUIDs of each service and its characteristics and are used by the user interface. Descriptions and names will need to be given for a new service or profile. The commented-out code in the gatt_uuid.xml file, seen in Figure 58, can be used as a template.

Figure 58, Example template of UUID name and description entries commented out in gatt_uuid.xml

Creating a Custom Bluetooth Profile Class

A custom Bluetooth profile class will be an extension of the generic Bluetooth profile class. These together will handle reading and writing data to the service characteristics, initializing the table row on the user interface, and any functionality related to the custom Bluetooth profile.

To create a new custom Bluetooth class, use the SensorTagCustomProfile template found in the source, BleSensorTag-java-com.powerfilm.les100-ble-sensortag-SensorTagCustomProfile.java

Uncomment code sections during implementation.

Page 48

DeviceActivity.java modification

The DeviceActivity.java code runs when the main activity selects a device to connect too. The new profile must be added to the existing code structure so it is discoverable.

Use the commented-out code, seen in Figure 59, as a template. This code is run in the mGattUpdateReceiver broadcast receiver when the onReceive method is triggered.

Figure 59, Example Custom Service initialization entry commented out in DeviceActivity.java

The Custom profile will also need to be added to the code that enables each row, use the commented-out line as a template (Figure 60).

Figure 60, location to enable a Custom Service during initialization in DeviceActivity.java, example commented out.

Page 49

Custom Profile Row

By default, a new profile will use the GenericCharacteristicTableRow to display data using a Sparkline, turn the service or sensor on/off, and adjust the service period.

If the custom profile requires addition elements on the row a designated row class that extends the GenericCharacteristicTableRow will be required.

See the profiles that use designated row classes for examples on how to implement a custom row class.

Block Diagram

Diagram

Figure 61, DEV-BLE-TI system block diagram.

Block Diagram Notes

BQ25570 Energy Harvester

- Responsible for collecting solar energy from the indoor solar panel and storing that energy into a Li-ion battery or other rechargeable storage element.
- Provides steady power to the entire system. Output voltage is adjustable from 1.3V to Storage Element voltage via R_{out_1} and R_{out_2}.

CC2650 Wireless MCU

• Responsible for collecting data and configuring sensors.

Page 50

• Handles Bluetooth Low Energy connection and communication with external Bluetooth devices.

PFDEV-TI Data Monitor (TI SensorTag App)

- Receives and displays data from connected PFDEV-TI devices.
- Provides a user interface for configuring sensor and Bluetooth connection settings.

Schematic

Overview

The DEV-BLE-TI board (PFDEV-TI device) design can be broken down into the energy harvesting portion (DEV-IN-BASIC) and the Bluetooth MCU portion. These components are physically separated on different halves of the circuit board and are only connected by ground, the power supply rail, and the battery level signal.

DEV-BASIC BQ25570 Energy Harvester

Page 51

Figure 62, DEV-BLE-TI BQ25570 energy harvester circuit diagram.

The BQ25570 is an ultra-low-power boost-buck charge controller and battery management dedicated IC. Solar is connected to the SOLAR_GND and SOLAR_PWR pins and the storage element is connected to BATT_GND and BATT_PWR pins. The BQ25570 will provide steady power to the RAILOUT_PWR rail using energy collected from the solar or from energy stored in the battery.

The energy harvesting circuit is connected to the Bluetooth MCU circuit through RAILOUT_PWR, RAILOUT_GND, and the VBATT_SIGNAL pins.

Bluetooth MCU

Figure 63, DEV-BLE-TI Bluetooth MCU

Page 52

Solder Bridge Connections

Figure 64, DEV-BLE-TI IO

Figure 65, DEV-BLE-TI Lux Meter and Debugger Dev Pack.

Page 53

The CC2650 Wireless MCU runs the DEV-BLE-TI BLE application, collects data from sensors, and handles Bluetooth communication.

I/O

Sensors are connected to IO of the CC2650. The OPT3001 uses three IO pins to set up I2C serial communication with the MCU; DIO_1, DIO_2, and DIO_5. The Battery Level signal is routed to pin DIO_6.

Ports and Connectors P1 is the programming JTAG interface.

P2 is the 20 pin TI Dev Pack connector. This enables TI sensor Dev Packs to be plugged in and integrated into the DEV-BLE-TI system.

P1 and P2 are physically oriented to allow the TI Debugger DevPack to be connected and used for programming and debugging. (See Code Composer section for more information on setting up the Debugger Dev Pack)

Access to all 10 IO pins is available via P3 female pin header.

Switches

S1 is the reset button switch. Under normal operation, CC2650 NRESET pin is pulled high. When S1 is depressed then released, the NRESET pin is pulled to ground and the CC2650 will reset.

Page 54

Layout

Тор

Figure 66, DEV-BLE-TI Top Board Layer

Bottom

Figure 67, DEV-BLE-TI Bottom Board Layer

Page 55

Part Placement

Figure 68, DEV-BLE-TI Part Placement

DEV-BLE-TI Application Notes

Power Consumption Optimization

The DEV-BLE-TI is able to adjust Bluetooth connection parameters, which can greatly reduce power consumption. The power consumption of the device is heavily dependent on the Bluetooth connection interval and the data period of the sensors. Both parameters can be adjusted within the application. Using long connection intervals (16 seconds max) and long time periods between sensor measurements will allow the device to operate at very low light levels.

Hardware Configurations

I/O Access

External sensors can be added to the system via the 10 pin I/O breakout header. On board sensors can be disconnected by removing SMD jumpers so that all I/O pins can be accessed.

The Luxmeter can be disconnected by removing resistors R3, R7, R8, and R10. This will free I/O pins DIO_1, DIO_2, and DIO_3 and disconnect the OPT3001 from the power supply rail.

The Battery monitor circuitry can be disconnected by removing resistor R9. This will free DIO_6.

Charge Control Configuration

The DEV-BLE-TI hardware is currently configured to charge a Li-ion type battery with max voltage of 4.2V and the output voltage is set to 3.0V. The configuration can be customized by modifying SMD resistor dividers per the BQ25570 datasheet specifications which can be found at <u>http://www.ti.com/lit/ds/symlink/bq25570.pdf</u> section 7.3.

- Output voltage can be set using R_{OUT}_1 and R_{OUT}_2.
- Max Battery Voltage can be set using Rov_1 and Rov_2.
- The minimum battery voltage and output turn on voltage can be set using resistors R_{OK} 1,2,3.

Capacitor/Super Capacitor Storage Element Operation

The DEV-BLE-TI is capable of running and operating with a capacitor as the storage element instead of the li-ion battery. Except the capacitor, the hardware configuration of the board can remain the same.

Theory of Operation

A capacitor will behave similarly to a small capacity battery when used as a storage element. It will charge and discharge quicker and may not hold as much energy as a li-ion battery.

Starting from fully discharged, when the is placed in a decently lit room the capacitor will begin to charge up. Once the voltage is above 3.2V the Bluetooth radio will be enabled and ready to connect to the SensorTag Application.

The capacitor will maintain steady power to the system while light is available. If the lights are turned off, the capacitor will discharge. When it reaches 3V the radio will shut down.

Specifications

- Capacitor must be at least 1800uF or greater.
- Capacitor must be rated for 6V or greater.

Charge and discharge rate will be greatly affected by the size of the capacitor. If the capacitor is completely discharged (0V) the charge rate will be slower because the harvester chip is not yet fully functional. Figures 69 and 70 show charge up times vs storage capacitance size for 0V-3V and 3V-4.2V.

Figure 69, 3V to 4.2V charge time vs storage capacity at 300 lux.

Figure 70, 0V-3V charge time vs storage capacitance at 300 lux.

CC2650 Microcontroller Reset

If the PFDEV-TI device experiences a Bluetooth connection failure it may enter lengthy software reset loops depending on the severity and circumstances of the failure. For this reason, a hardware reset button is present on the circuit board to quickly reset the Bluetooth functionality of the PFDEV-TI.